YEAR 10 HIGHER

KNOWLEDGE ORGANISERS

Term		Definition			
Numb	ber				
1	Percentage change	$Percentage \ Change = \frac{change}{original} \times 100$			
2	Reverse percentages	When you are given a percentage that is not 100% and a value, and you need to work out the original value (100%). E.g. 40% = 24. So 10% = 6 So 100% = 60.			
3	Percentage multiplier	A number you can multiply by to do percentage increase or decrease in one step. E.g. Increase by 7% = Multiply by 1.07 Decrease by 8% = Multiply by 0.92			
4	Simple interest	Simple interest is where you calculate the first year of interest, and this is simply added on each year for a given number of years.			
Geom	etry and measures				
5	Upper bound	The upper limit of what a number could be. E.g. I weight 80kg to the nearest 5kg. The upper bound would be 82.5kg			
6	Lower bound	The lower limit of what a number could be. E.g. I weight 80kg to the nearest 5kg. The lower bound would be 77.5kg			
7	1cm	10mm			
8	1m	100cm			
9	1km	1000m			
10	1kg	1000g			
11	1 tonne	1000kg			
12	1 litre	1000ml			
13	1 litre	100cl			
14	1ml	1cm^3			
15	Speed	$Speed = \frac{distance}{time}$			
16	Density	$Density = \frac{mass}{volume}$			
17	Pressure	$Pressure = \frac{force}{area}$			
Numb	ber				
18	Surd	A number that can't be simplified to remove a square root (or cube root etc).			
19	Rationalise the denominator	"Rationalizing the denominator" is when we move a root (like a square root or cube root) from the bottom of a fraction to the top. $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{1 * \sqrt{2}}{\sqrt{2} * \sqrt{2}}$ $= \frac{\sqrt{2}}{\sqrt{2} * 2}$ $= \frac{\sqrt{2}}{2}$			
20	Geometric progressions	Also known as a geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. E.g. 2, 6, 18, 54,			

Term		Definition			
Statis	tics				
1	Median	The middle of an ordered set of values.			
2	Mode	The most common value in a dataset			
3	Range	The difference between the largest and smallest data value.			
4	Mean	The average given when you add up all the values and divide by how many values			
		there are.			
5	Quartiles	Quartiles are the values that divide a list of numbers into quarters: Put the list of			
-		numbers in order. Then cut the list into four equal parts.			
6	Inter-guartile range	The interguartile range is the range between the first and third quartiles.			
7	Spread	The differences between the ranges of different datasets			
	opreda	If the range is large the spread is large			
		If the range is small, the spread is small			
8	Primary data	Data collected yourself			
0		E.g. you design and complete a survey of students yourself			
0	Secondary data	Data collected from complete a salvey of statents yourself.			
9	Secondary data	E a data from a Covernment consus			
10	Discroto data	Ligi data from a dovernment census.			
10	Discrete data	Data that can only take certain values.			
4.4	Continuous data	E.g. the number of students in a class, your shoe size, number of cars in the car park.			
ΤŢ		Data that can take any value.			
40	Consultan	E.g. temperature, time taken to run a race, neight.			
12	Sampling	A sample is a selection taken from a larger group.			
Numb	er				
13	Integer	A whole number. A positive number, a negative number or zero but not a fraction or			
		a decimal.			
14	Roots	The root of a number X is another number, which when multiplied by itself a given			
		number of times, equals x.			
		For example, the square root of 100 = 10. $\sqrt{100} = 10$. This is because 10 x 10 = 100.			
		For example, the cube root of 8 = 2. $\sqrt[3]{8} = 2$			
15	Powers	A small number to tell you how many times to multiply the number by itself. It is			
		usually at the top right of the base number.			
		E.g. $10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$			
		E.g. $2^5 = 2 \times 2 \times 2 \times 2 \times 2$			
16	Powers of 2	2,4,8,16,32,64,128,256			
17	Powers of 3	3.9.27.81.243.729.2187			
18	Powers of 4	4 16 64 256 1024 4096			
19	Powers of 5	5 125 625 3125 15625			
20	Square numbers	1 4 9 16 25 36 49 64 81 100 121 144 169 196 225			
20	Square numbers	These form a square			
21	Eractional indices	The dependence of the fraction is the reat of the number or			
21		Letter and the numerator of the fraction is the power to raise the $\frac{z}{z} = (\sqrt{3})^2 = 4$			
		answer to $\frac{1}{2\pi m le^2}$			
Coom	otry and measures				
22	Angles in a triangle	Angles in a triangle add up to 180			
22	Angles III a tridilgie	Angles in a finite and up to 100.			
23	Angle sum of a polygon	Sum of interior angles= $180 \times (n - 1)$			
24	Regular polygon	A polygon is regular when all angles are equal and all sides are equal (otherwise it is			
25		Integuiar).			
25	Isosceles triangle	An isosceles triangle is a triangle that has two sides of equal length.			
26	Equilateral triangle	An equilateral triangle is a triangle that has three sides of equal length.			
27	Scalene triangle	A scalene triangle is a triangle that has three unequal length and unequal angles.			
28	Right-angled triangle	A right angle triangle is a triangle with a right angle.			
29	Obtuse-angled triangle	An obtuse-angled triangle is a triangle with an angle more than 90 degrees.			
30	Acute-angled triangle	An acute-angled triangle is a triangle with every angle less than 90 degrees.			
31	Pentagon	A pentagon is a polygon which has 5 sides.			
32	Hexagon	A hexagon is a polygon which has 6 sides.			
33	Octagon	An Octagon is a polygon which has 8 sides.			
34	Decagon	A decagon is a polygon which has 10 sides.			
35	Kite	A kite is a guadrilateral with two distinct pairs of adiacent / sides			
		that are congruent. The diagonals of a kite are			
		perpendicular.			
36	Bhombus	•A rhombus is a quadrilateral with all four sides having equal			
50		length.			
		Bhowster			
		Knombus			

	Term	Definition			
Numb	er				
1	Recurring decimals	A number in which a digit or group of digits is repeated indefinitely after the decimal point. E.g. $\frac{1}{2} = 0.11111111$			
2	To success the state of the state of the	1.6.9 = 0.11111111			
2	Terminating decimais	A number that contains a finite number of digits after the decimal point. E.g. $\frac{1}{2} = 0.5$			
3	Upper bound	The upper limit of what a number could be.			
		E.g. I weight 80kg to the nearest 5kg. The upper bound would be 82.5kg			
4	Lower bound	The lower limit of what a number could be.			
		E.g. I weight 80kg to the nearest 5kg.			
-		The lower bound would be 77.5kg			
5	Nth term of Quadratic sequences	Finding an nth term rule for a quadratic sequence			
		For a quadratic sequence $an^2 + bn + c$			
		The first 1% difference is always $2a$			
		the 1 st term is always $a + b + c$			
		Eg find the nth term rule of the sequence 8, 14, 22, 32,			
		a+b+c=8 14 22 32 sequence $\Rightarrow c=5$			
		3a+b=6 8 10 1 st differences			
		$2a = 2$ 2^{2a4} differences			
		\Rightarrow $a=1$ so the nth term rule is $n^2 + 3n + 4$			
6	Geometric progressions	Also known as a geometric sequence, is a sequence of numbers where each term			
		after the first is found by multiplying the previous one by a fixed, non-zero number			
		called the common ratio. E.g. 2, 6, 18, 54,			
7	Rationalise denominators	"Rationalizing the denominator" is when we move a root (like a square $\frac{1}{1}$			
		root or cube root) from the bottom of a fraction to the top. $ \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \\ = \frac{\sqrt{2}}{\sqrt{2} + \sqrt{2}} \\ = \frac{\sqrt{2}}{\sqrt{2}} \\ = \frac{\sqrt{2}}{\sqrt{2}} $			
8	Roots	A number that can't be simplified to remove a square root (or cube root etc). Examples: V2			
9	Fractional indices	- Coute			
		The denominator of the fraction is the root of the number or Example 1 $8^{\frac{2}{3}} = (3\sqrt{8})^2 = 4$			
		letter, and the numerator of the fraction is the power to raise $\frac{1}{2}$			
		the answer to. Example 2. $16^- = (2\sqrt{16})^2 = 10^{-10}$			
Geom	etry and measures				
10	Congruent triangles	Shapes that are exactly the same shape and size.			
		SSS (Side Side Side)			
		SAS (Side, Angle, Side)			
		ASA (Angle, Side, Angle)			
		RHS (Right Angle, Hypotenuse, Side)			
11	Similar shapes (Length, area and	It is the same shape but a different size.			
	volume)				
12	Pythagoras' theorem	This is used when you have two sides of a right-angled triangle $a^2 + b^2 = h^2$			
		and you need to find out the third side.			
		$a^2 + b^2 = b^2$			
13	Trigonometry	SOHCAHTOA b			
	J,	SOH $\sin \theta = \frac{Opposite}{Hypotemise}$			
		Hypotenuse $Cas \theta = -\frac{Adjacent}{Adjacent}$			
		Hypotenuse Opposite			
		$\frac{\sigma}{\text{Adjacent}} \qquad \text{IOA} \text{fan } \theta = \frac{1}{\text{Adjacent}}$			

14	Exact trigonometric values	Exa	Exact Values of Trigonometric Functions				
		Angle	e (θ)	sin(A)	$\cos(\theta)$	tan(A)	
		Degrees	Radians	sin(0)	cos (0)	tan(0)	
		0°	0	0	1	0	
		30 °	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	
		45 °	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	
		60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	
		90°	$\frac{\pi}{2}$	1	0	Not Defined	

Term		Definition			
Algeb	ra				
1	Simultaneous equations	A set of equations that are all satisfied by the same values of the variables.			
2	Linear graph	The word Linear simply means straight, so if you have a linear graph it is a straight line graphed by the equation y=mx+b where m is the slope and b is the y intercept(the point where the line crosses the y-axis).			
3	Quadratic graph	A graph drafted for a quadratic equation: $ax^2 + bx + c$ Y= x^2 is the simplest quadratic, it's graph looks like this:			
Proba	bility				
4	Randomness	Randomness is the lack of pattern or predictability in events. A random sequence of events, symbols or steps has no order and does not follow an intelligible pattern or combination.			
5	Fairness	In mathematics we say "fair dice" when we mean that there is an equally likely chance of landing on any face.			
6	Bias	Bias is a statistical term which means a systematic deviation from the true value.			
7	Probability	Probability is the likelihood of something happening in the future. It is expressed as a number between 0 (impossible) and 1 (certain).			
8	Mutually exclusive	Mutually exclusive outcomes cannot happen at the same time.			
		Flipping a coin has mutually exclusive outcomes, it can't be both heads and tails.			
9	Theoretical probability	What is the probability of it happening in theory.			
		E.g. The theoretical probability of rolling a 3 on a dice is $\frac{1}{6}$			
10	Experimental probability	What was the probability of it in real life when you actually did the experiment. This will differ from the theoretical probability initially but will get closer and closer with an increasing number of trials you do.			
11	Venn diagrams	A diagram using circles or other shapes, to show the relationship between sets.			
12	Tree diagrams	A diagram shaped like a tree used to display sample space by using one branch for each possible outcome in a probability exercise.			
13	Sample space diagrams	A sample space is the set of all possible outcomes in the experiment. It is usually denoted by the letter S. Sample space can be written using the set notation, { }.			
Statis	tics				
14	Histograms	In math, a histogram is a visual way to display frequency data using bars. A feature of histograms is that they show the frequency of continuous data.			
15	Cumulative frequency	Cumulative frequency is the running total of the frequencies.			
16	Boxplots	Boxplot is a graphical representation of statistical measures like median, upper and lower quartiles, minimum and maximum data values.			
17	Primary data	Data collected yourself. E.g. you design and complete a survey of students yourself.			
18	Secondary data	Data collected from somewhere else that you did not collect. E.g. data from a Government census.			
19	Continuous data	Data that can take any value. E.g. temperature, time taken to run a race, height.			
20	Discrete data	Data that can only take certain values. E.g. the number of students in a class, your shoe size, number of cars in the car park.			
21	Quartiles	Quartiles are the values that divide a list of numbers into guarters			
22	Inter-quartile range	The interquartile range is a measure of where the "middle fifty" is in a data set.			
23	Lines of best fit	A line drawn on a scatter graphs that has roughly the same number of points above the			
		line as below the line, passing through as many points as possible.			

24	Interpolation	This is when you use estimate a value from within your data set. It is a useful skill to have.
25	Extrapolation	Extrapolation is when you estimate a given value outside of your given data range. It is extremely dangerous to do this as you do not know for certain if the relationship you have identified continues before or outside of your data values.
26	Sampling	A sample is a selection taken from a larger group.

Term		Definition			
Algeb	ra				
1	Expanding double brackets	Expand and simplify			
		(x - 9) (x + 6)			
		$x^{2} + 6x - 9x - 54$			
2	Factorising quadratics	A quadratic expression can s	sometimes be factorised into two brackets in the		
		form of (x + a)(x + b)	where a and b can be any term, positive, negative		
		or zero. a and b can be foun	d by using a product and sum method.		
3	Sum	Sum is the addition of a sequ	uence of numbers		
4	Product	A product is the answer to a	ny multiplication problem.		
5	Indices	Powers			
6	Re-arranging formulae	Rearrange formulae in order	r to change the subject.		
Geom	etry and measures				
7	Scale factors	The amount you multiply, or	r divide by, to get from one shape to another.		
8	Similarity (Lengths, areas, volumes)	It is the same shape but a different size.	Volumes in similar shapes		
			Compare the volume of the original cube and the volume of the enlarged cube:		
			$ \begin{array}{c} \text{length } \times 3 \\ \text{area } \times 9 \\ \text{volume } \times 27 \end{array} $ The volume is enlarged by a scale factor of 3 ³ .		
9	Volume of a cuboid	$V=b^3$			
10	Volume of a cylinder	$V=\pi r^2 l$			
11	Volume of a sphere	$V = \frac{3}{4}\pi r^3$			
12	Volume of a pyramid	$V = \frac{1}{3} lwh$			
13	Volume of a cone	$V = \frac{1}{3}\pi r^2 l$			
14	"In terms of pi."	It's when you leave the answ	ver with pi in.		

Year	10	Term	6
			-

	Term	Definition
Alge	bra	
1	Y = mx +c	y=mx+c is the standard form of the equation of a straight line, where 'm' is the gradient of the line and 'c' is the y-intercept.
2	Parallel lines	Lines are parallel if they are always the same distance apart (called "equidistant"), and will never meet.
3	Perpendicular lines	Lines that are at right angles (90°) to each other.
4	Gradient	The Gradient (also called Slope) of a straight line shows how steep a straight line is. Gradient = $\frac{change in y}{change in x}$
5	Y-intercept	The y-intercept is the point in a function where a line or curve crosses the y-axis. In other words: the value of the x-coordinate is zero.
6	Reciprocal graphs	A graph of the form $y = \frac{1}{x}$ is known as a reciprocal graph and once drawn, looks
7	Exponential graphs	Exponential graphs are graphs in the form $y = k^x$. These graphs increase rapidly in the y direction and will never fall below the x -axis. An exponential graph will look like this:
8	Solve an equation with an unknown on both sides.	$ \begin{array}{r} 5x - 2 = 3x + 4 \\ -3x & -3x \\ \hline 2x - 2 = 4 \\ +2 & +2 \\ \hline 2x = 6 \\ \hline x = 3 \end{array} $
9	Cubic graph	A cubic equation contains only terms up to and including x^3 . $y = x^3$
10	Linear graph	The word Linear simply means straight, so if you have a linear graph it is a straight line graphed by the equation y=mx+b where m is the slope and b is the y intercept(the point where the line crosses the y-axis).
11	Solve a quadratic by factorising	$9x^{2} + 30x + 25 = 0$ (3x + 5)(3x + 5) = 0 3x + 5 = 0 or 3x + 5 = 0 $3x = -5 \qquad 3x = -5$ $x = -\frac{5}{3} \qquad x = -\frac{5}{3}$
Geor	metry and measures	
12	Similar shapes	The shapes have the same ratios between sides.
13	Congruent	Exactly the same shape and size
14	Transformations	TERRY: Translations, Enlargements, Reflections, Rotations, Yeah!
15	Translation	A transformation where a shape is just moved left/right and up/down. It is usually written as a column vector. For example, $\binom{5}{-2}$ means 5 right, 2 down.
16	Enlargement	A transformation where one shapes has been enlarged by a given scale factor (can be larger or smaller). You also require a centre of enlargement.
17	Reflection	Each point in a shape appears the same distance on the opposite side of a line (the line of reflection).
18	Rotation	A circular movement around a point. A full rotation is a turn of 360°.
19	Scale factor	The amount you multiply, or divide by, to get from one shape to another.
20	Surface area	The total area of the surface of a three-dimensional object.
21	Frustum	A frustum (plural: frusta or frustums) is the portion of a solid (normally a cone or pyramid) that lies between one or two parallel planes cutting it.